2022-2023

Title	Syllabus Distribution
Session	2022-23 (Even Semester)
Department	B.Sc General in PHYSICS
Institution Name	Hiralal Bhakat College, Nalhati, Birbhum, W.B.
Coordinator	Md Ashik Mondal , SACT in PHYSICS

Details of Courses of B.Sc. General under CBCS

Sl.	Course	Credit		Marks
1.	Core Course (12 Papers)	Theory+Practical	Theory+Tuitorial	12×75=900
	4 core papers each in 3 disciplines of choice	12×(4+2)=72	12×(5+1)=72	
2.	Elective Course DSE	6×(4+2)=36	6×(5+1)=36	6×75=450
	(6 Papers)			
3	Ability Enhancement Core			
	Course (AECC)	4×1=4	4×1=4	100
	AECC-1 (ENVS)	2×1=2	2×1=2	50
	AECC-2 (English/MIL)			
4.	SEC (4 Papers)	4×2=8	4×2=8	4×50=200
	Total Credit:	122	122	1700

B.Sc. PHYSICS General Course Structure

Semester	Course Course (CC)	Discipline Specific Elective (DSE)	Ability Enhancement Course		
			AECC (2)	SEC(4)	
I	CC1A (Mathematics) CC2A (Physics) CC3A (Computer Sc.)		AECC-1		
Ш	CC1B (Mathematics) CC2B (Physics) CC3B (Computer Sc.)		AECC-2		
Ш	CC1C (Mathematics) CC2C (Physics) CC3C (Computer Sc.)			SEC-1 (Mathematics) or SEC-1 (Computer Sc.)	
IV	CC1D (Mathematics) CC2D (Physics) CC3D (Computer Sc.)			SEC-2 (Mathematics) or SEC-2 (Computer Sc.)	
V		DSE1A (Mathematics) DSE2A (Physics) DSE3A (Computer Sc.)		SEC-3 (Computer Science) or SEC-3 (Physics)	
VI		DSE1B (Mathematics) DSE2B (Physics) DSE3B (Computer Sc.)		SEC-4 (Computer Science) or SEC-4 (Physics)	

<mark>Semester-II</mark>

CoreCourse (CC 2B): ELECTRICITY AND MAGNETISM

Syllabus	Number of Lecture	Course	Name of Teacher
Vector Analysis: Review of vector algebra (Scalar and Vector product), gradient, divergence, Curl and their significance, Vector Integration, Line, surface and volume integrals of Vector fields, Gaussdivergence theorem and Stoke's theorem of vectors (statement only).	12L		
Electrostatics: Electrostatic Field, electric flux, Gauss's theorem of electrostatics. Applications of Gauss Theorem- Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor. Electric potential as line integral of electric field, potential due to a point charge, electric dipole, uniformly charged spherical shell and solid sphere. Calculation of electric field from potential. Capacitance of an isolated spherical conductor. Parallel plate, spherical and cylindrical condenser. Energy per unit volume in electrostatic field. Dielectric medium, Polarisation, Displacement vector. Gauss's theorem in dielectrics. Parallel plate capacitor completely filled with dielectric.	22 L	СС	Md Ashik Mondal
Magnetism: Magnetostatics: Biot-Savart's law & its applications- straight conductor, circular coil, solenoid carrying current. Divergence and curl of magnetic field.Magnetic vector potential.Ampere's circuital law. Magnetic properties of materials: Magnetic intensity, magnetic induction, permeability, magnetic susceptibility. Brief introduction of dia-, para- and ferro-magnetic materials. (10 L		
Electromagnetic Induction: Faraday's laws of electromagnetic induction, Lenz's law, self and mutual inductance, L of single coil, M of two coils. Energy stored in magnetic field.	6L		
Maxwell's equations and Electromagnetic wave propagation: Equation of continuity of current, Displacement current, Maxwell's equations, Poynting vector, energy density in electromagnetic field, electromagnetic wave propagation through vacuum and isotropic dielectricmedium, transverse nature of EM waves, polarization.	10L		

Practical:

1. To use a Multimeter for measuring (a)Resistances, (b)AC and DC Voltages, (c) DC Current, and (d) checking electrical 2. Ballistic Galvanometer: (i) Measurement of charge and current sensitivity (ii) Measurement of CDR 3. To compare capacitances using De'Sauty's bridge.

- 4. To study the Characteristics of a Series RC Circuit.
- 5. To study the a series LCR circuit and determine its (a) Resonant Frequency, (b) Quality Factor
- 6. To study a parallel LCR circuit and determine its (a) Anti-resonant frequency and (b) Quality factor Q
- 7. To determine a Low Resistance by Carey Foster's Bridge.

Semester-II

CoreCourse (CC 2B): ELECTRICITY AND MAGNETISM

Fluids: Surface Tension: Synclastic and anticlastic surface - Excess of pressure – Application to spherical and cylindrical drops and bubbles-variation of surface tension with temperature - Jaegar's method. Viscosity: Viscosity - Rate flow of liquid in a capillary tube - Poiseuille's formula - Determination of coefficient of viscosity of a liquid - Variations of viscosity of a liquid with temperature lubrication. Physics of low pressure - production and measurement of low pressure- Rotary pump- Diffusion pump - Molecular pump - Knudsen absolute gauge - penning and pirani gauge – Detection of leakage.	22 L		
Sound: Simple harmonic motion - forced vibrations and resonance - Fourier's Theorem - Application to saw tooth wave and square wave - Intensity and loudness of sound - Decibels - Intensity levels - musical notes - musical scale. Acoustics of buildings: Reverberation and time of reverberation - Absorption coefficient - Sabine's formula – measurement of reverberation time- Acoustic aspects of halls and auditoria.	10 L	СС	Md Ashik Mondal
Wave Optics: Electromagnetic nature of light. Definition and Properties of wavefront. Huygens Principle. Interference: Interference: Division of amplitude and division of wavefront. Young's Double Slit experiment. Lloyd's Mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination (Haidinger Fringes);	6L		
Diffraction: Fraunhofer diffraction: Single slit; Double Slit.Multiple slits & Diffraction grating. Fresnel Diffraction: Half- period zones. Zone plate. Fresnel Diffraction pattern of a straight edge, a slit and a wire using half-period zone analysis. Polarization: Transverse nature of light waves. Plane polarized light – production and analysis. Circular and elliptical polarization.	19L		

<mark>Semester-VI</mark>

DSE-2B : DIGITAL AND ANALOG CIRCUITS AND INSTRUMENTATION

Syllabus	Number of Lecture	Course	Name of Teacher
Digital Circuits: Difference between Analog and Digital Circuits. Binary Numbers. Decimal to Binary andBinary to Decimal Conversion, AND, Or and NOT Gates (Realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR Gates. De Morgan's Theorems. Boolean Laws. Simplification of Logic Circuit using Boolean Algebra. Fundamental Products.Minterms and Maxterms.Conversion of a Truth Table into an Equivalent Logic Circuitby (1) Sum of Products Method and (2) Karnaugh Map	13 L		
Semiconductor Devices and Amplifiers: Semiconductor Diodes: p and n type semiconductors.Barrier Formationin PN Junction Diode. Qualitative Idea of Current Flow Mechanism in Forward and Reverse Biased Diode.PN junction and its characteristics. Static and Dynamic Resistance. Principleand structure of (1) LEDs (2) Photodiode (3) Solar Cell. Bipolar Junction transistors: n-p-n and p-n-p Transistors. Characteristics of CB, CE and CC Configurations. Active, Cutoff, and Saturation Regions. Current gains α and β . Relations between α and β . Load Line analysis of Transistors. DC Load line and Q-point. Voltage Divider Bias Circuit for CE Amplifier. h-parameter Equivalent Circuit. Analysis of a single-stage CE amplifier using Hybrid Model. Input and Output Impedance. Current, Voltage and Power Gains. Class A, B, and C Amplifiers. Operational Amplifiers (Black Box approach): Characteristics of an Ideal and Practical Op-Amp (IC 741), Open-loop & Closed-	17 L	DSE	Md Ashik Mondal
loop Gain.CMRR, concept of Virtual ground. Applications of Op- Amps: (1) Inverting and Non-inverting Amplifiers, (2) Adder, (3) Subtractor, (4) Differentiator, (5) Integrator, (6) Zero Crossing Detector. (13Lectures) Sinusoidal Oscillators: Barkhausen's Criterion for Self-sustained Oscillations. Determination of Frequency of RC Oscillator	18 L		
Instrumentations: Introduction to CRO: Block Diagram of CRO. Applications of CRO: (1) Study of Waveform, (2) Measurement of Voltage, Current, Frequency, and Phase Difference. (3Lectures) Power Supply: Half-wave Rectifiers. Centre-tapped and Bridge Full-wave Rectifiers Calculation of Ripple Factor and Rectification Efficiency, Basic idea about capacitor filter, Zener Diode and Voltage Regulation Timer IC: IC 555 Pin diagram and its application as Astable & Monostable Multivibrator	12 L		
 To measure (a)Voltage, and (b) Frequency of a periodic wave form using a CRO To verify and design AND, OR, NOT and XOR gates using NAND gates. To minimize a given logic circuit. 4. Half adder, Full adder and 4-bit Binary Adder. Adder-Subtractor using Full Adder I.C. To study I-V characteristics of PN diode and Zener diode. To study the characteristics of a Transistor in CE configuration. To design a CE amplifier of a given gain (mid-gain) using voltage divider bias. 		Practical	Md Ashik Mondal

Books Recommended:

- 1. B.A. Forouzan: Data Communication and Networking, 4th Edition, Tata McGraw Hill, 2007.
- 2. D.E. Comer, Internetworking with TCP/IP, Vol. I, Prentice Hall of India, 1998.
- 3. W. Stalling, Data & Computer Communication, 8th edition, Prentice Hall of India, 2006.
- 4. D. Bertsekas, R. Gallager, Data Networks, 2nd edition, Prentice Hall of India,

Skill Enhancement Course (SEC)

SEC4 : ELECTRICAL CIRCUITS AND NETWORK SKILLS

Basic Electricity Principles: Voltage, Current, Resistance, and Power. Ohm's law. Series, parallel, and series-parallel	7L		
combinations. AC Electricity and DC Electricity. Familiarization			
with multimeter, voltmeter and ammeter.			
Understanding Electrical Circuits: Main electric circuit elements			
and their combination. Rules to analyze DC sourced electrical			
circuits. Current and voltage drop across the DC circuit			
elements.Singlephaseandthree-phasealternatingcurrentsources.			
Rules to analyze AC sourced electrical circuits. Real, imaginary			
and complex power components of AC source. Power factor.			
Saving energy and money.			
Electrical Drawing and Symbols: Drawing symbols. Blueprints.	8L		
Reading Schematics. Ladder diagrams. Electrical Schematics.		SEC	Md Ashik
Power circuits. Control circuits. Reading of circuit schematics.		BEC	Mondal
Tracking the connections of elements and identify current flow and			Withuai
voltage drop. (4Lectures) Generators and Transformers: DC Power			
sources. AC/DC generators. Inductance, capacitance, and			
impedance. Operation of transformers.			
Electric Motors: Single-phase, three-phase & DC motors. Basic	11L		
design. Interfacing DC or AC sources to control heaters & motors.			
Speed & power of ac motor. (4 Lectures) Solid-State Devices:			
Resistors, inductors and capacitors. Diode and rectifiers.			
Components in Series or in shunt. Response of inductors and			
capacitors with DC or A C sources (3Lectures) Electrical			
Protection: Relays. Fuses and disconnect switches. Circuit			
breakers. Overload devices. Ground-fault protection. Grounding			
and isolating. Phase reversal. Surge protection. Interfacing DC or			
AC sources to control elements (relay protection device).			
Electrical Wiring: Different types of conductors and cables. Basics	5L		
of wiring-Star and delta connection. Voltage drop and losses			
across cables and conductors. Instruments to measure current,			
voltage, power in DC and AC circuits. Insulation. Solid and			
stranded cable. Conduit.Cable trays. Splices: wirenuts, crimps,			
terminal blocks, split bolts, and solder. Preparation of extension			
board.			

